organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,6-Bis[2-(4-benzyloxyphenyl)ethyl]biphenyl

Stephen C. Moratti,^a Jim Simpson^a* and Steven M. Tierney^b

^aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, and ^bMerck Chemicals, Chilworth Technical Centre, University Parkway, Southampton SO16 7QD, England Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Received 28 August 2007; accepted 29 August 2007

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.003 Å; R factor = 0.066; wR factor = 0.169; data-to-parameter ratio = 18.5.

The title compound, $C_{42}H_{38}O_2$, comprises a biphenyl system linked symmetrically at the 2- and 6-positions *via* two ethanediyl chains to two benzyloxyphenyl units. Both the ethanediyl and the benzyl ether linkages in the molecule are *trans* in the solid state, reinforcing the probability of a reentrant structure. The rings of the biphenyl are inclined at 85.34 (8)° to one another. In the crystal structure, molecules form centrosymmetric dimers through $C-H\cdots O$ hydrogen bonds and are further linked into a three-dimensional network by a series of $C-H\cdots \pi$ interactions.

Related literature

For information on auxetic materials, see: Evans *et al.* (1991); Aldred & Moratti (2005). No structures of benzyloxy ethylbenzene derivatives of biphenyl have been reported previously but two molecules with linked benzyloxybenzene systems are known; see Roesky *et al.* (1997); Cannon *et al.* (1989).

c = 16.4136 (5) Å

V = 1613.22 (8) Å³

 $\alpha = 100.213 \ (2)^{\circ}$

 $\beta = 98.218 \ (2)^{\circ}$ $\gamma = 98.642 \ (2)^{\circ}$

Experimental

Crystal data

$C_{42}H_{38}O_2$	
$M_r = 574.72$	
Triclinic, $P\overline{1}$	
a = 10.0431 (3) Å	
b = 10.2145 (3) Å	

Z = 2Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.971, T_{max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.169$ S = 1.027345 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg3 and Cg5 are the centroids of the C1–C6, C17–C22 and C31–C36 benzene rings, respectively.

T = 180 (2) K $0.30 \times 0.18 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.045$

397 parameters

 $\Delta \rho_{\text{max}} = 0.73 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.44 \text{ e } \text{\AA}^{-3}$

22105 measured reflections

7345 independent reflections

5114 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14A\cdotsO8^{i}$	0.95	2.48	3.326 (4)	149
$C2-H2A\cdots Cg5^{ii}$	0.95	2.78	3.644 (2)	152
$C7 - H7B \cdots Cg1^{iii}$	0.99	2.68	3.575 (3)	150
$C13 - H13A \cdots Cg1^{iv}$	0.95	2.82	3.620 (2)	143
$C28-H28A\cdots Cg3^{v}$	0.95	2.98	3.865 (2)	155

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x, y, z + 1; (iii) -x, -y, -z + 2; (iv) -x, -y + 1, -z + 2; (v) -x + 1, -y + 1, -z + 1.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004) and *PLATON* (Spek, 2003).

We thank Dr John Davies, University of Cambridge, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2317).

References

- Aldred, P. & Moratti, S. C. (2005). Mol. Simul. 31, 883-887.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Cannon, J. R., Patrick, V. A. & White, A. H. (1989). Aust. J. Chem. 42, 1631– 1645.
- Evans, K. E., Nkansah, M. A., Hutchinson, I. J. & Rogers, S. C. (1991). *Nature* (*London*), **353**, 124.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Roesky, C. E. O., Czugler, M. & Weber, E. (1997). Z. Kristallogr. New Cryst. Struct. 212, 327–328.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o3954 [doi:10.1107/S1600536807042304]

2,6-Bis[2-(4-benzyloxyphenyl)ethyl]biphenyl

S. C. Moratti, J. Simpson and S. M. Tierney

Comment

Auxetic materials are those with a negative Poisson ratio, *i.e.* they expand sideways upon stretching (Evans *et al.*, 1991). A common theme in auxetic materials is that of the re-entrant structural motif. In this way, any force along one axis gets transmitted in a lateral fashion to a perpendicular axis. We were interested to see if such a unit could be deliberately designed into a polymer backbone. Computer simulations of such structures suggest that, under ideal situations, the resulting material should be auxetic (Evans *et al.*, 1991; Aldred & Moratti, 2005). While rigid auxetic molecular structures are not too hard to design (Evans *et al.*, 1991), ideally they should have some flexibility in order to accommodate chain motion and resultant strain.

By using a 1,2,3-trisubstituted phenyl ring and 1,2-ethane linkers it was hoped to get some flexibility as well as enforcing a re-entrant structure. In order to determine suitable polymer backbones, model oligomers were synthesized for structural analysis and monomer (I) was obtained from the hydrogenation of the Wittig-produced diene.

In (I), the biphenyl system is linked symmetrically at the 2 and 6-positions *via* two ethandiyl chains to two benzyloxyphenyl units. In the solid state, both the ethandiyl and benzyl ether linkages stayed *trans* - reinforcing the overall re-entrant structure of the central 1,2,3-phenyl linkage. The rings of the biphenyl group are almost orthogonal with a dihedral angle of 85.34 (8)° between them. The rings of the two benzyloxybenzene groups are inclined at 58.99 (10)° C1…C6/ C9…C14 and 33.22 (13)° C31…C36/C39…C44 respectively.

In the crystal, molecules form inversion related dimers through C—H···O hydrogen bonds and are further linked into a three dimensional network by a series of C—H··· π interactions. Fig 2, Table 1.

Experimental

2,6-Bis(4-benzyloxystyryl)biphenyl, 1, (0.56 g, 1.0 mmol) and 10% palladium on charcoal (0.10 g, 0.1 mmol) in ethyl acetate (50 *cm*3) were rocked under hydrogen at 40 psi at room temperature for 48 h. The solution was filtered through a short celite pad and concentrated *in vacuo* to yield a yellow solid. Flash chromatography, eluting in hexane-ethyl acetate (4:1), afforded 2,6-bis[2-(4-benzyloxyphenyl)ethyl]biphenyl (0.23 g, 41%) as a white solid: mp 133–134 °C [Found: C, 87.3%; H, 6.65%; *M*+ 574.2872 (ESI). C42H38O2 requires C, 87.8%; H, 6.7%; *M*+ 574.2862]; vmax(KBr)/cm₋₁ 3029 2956 2921 2865 (C—H), 1611 1582 1513 (aromatic), 1455, 1246, 1175, 1025; δ H(400 MHz; CDCl₃) 7.39 (10*H*, m, ArH), 7.35 (2*H*, m, ArH), 7.31 (2*H*, m, ArH), 7.16 (1*H*, s, ArH), 6.78 (8*H*, m, ArH), 5.00 (4*H*, s, CH2O), 2.59 (8*H*, m, CH2CH2); δ C(101 MHz; CDCl₃) 156.9, 141.4, 140.1, 139.8, 137.2, 134.4, 129.6, 129.2, 128.5, 128.1, 127.8, 127.4, 126.8, 114.6, 70.0 (OCH₂), 37.0 (CH₂CH₂), 36.5 (CH₂CH₂). Colourless crystals of (I) were obtained as needles from ethyl acetate layered with hexane.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.95 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic and 0.99 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂ groups. In the final difference Fourier map, two peaks of approximately 0.7 e Å⁻³ are found close to C7 and O8 but no chemical significance could be attached to them.

Figures

2,6-Bis[2-(4-benzyloxyphenyl)ethyl]biphenyl

Crystal data	
$C_{42}H_{38}O_2$	Z = 2
$M_r = 574.72$	$F_{000} = 612$
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.183 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.0431 (3) Å	Cell parameters from 12508 reflections
b = 10.2145 (3) Å	$\theta = 1.0-27.5^{\circ}$
c = 16.4136 (5) Å	$\mu = 0.07 \text{ mm}^{-1}$

$\alpha = 100.213 \ (2)^{\circ}$	T = 180 (2) K
$\beta = 98.218 \ (2)^{\circ}$	Plate, colourless
$\gamma = 98.642 \ (2)^{\circ}$	$0.30 \times 0.18 \times 0.05 \text{ mm}$
V = 1613.22 (8) Å ³	

Data collection

Nonius KappaCCD diffractometer	7345 independent reflections
Radiation source: fine-focus sealed tube	5114 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.045$
T = 180(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
Thin–slice ω and ϕ scans	$\theta_{\min} = 3.6^{\circ}$
Absorption correction: multi-scan (SORTAV; Blessing, 1995)	$h = -13 \rightarrow 12$
$T_{\min} = 0.971, \ T_{\max} = 0.980$	$k = -13 \rightarrow 13$
22105 measured reflections	$l = -20 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.169$	$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2 + 0.8567P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.005$
7345 reflections	$\Delta \rho_{max} = 0.73 \text{ e } \text{\AA}^{-3}$
397 parameters	$\Delta \rho_{min} = -0.44 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	1.0625 (3)	0.8508 (2)	-0.04760 (14)	0.0504 (6)

G2	0.0400 (2)		0 110 10 (17)	0.05(5.(0)
C2	0.9489 (2)	0.8225 (2)	-0.11049 (17)	0.0565 (6)
H2A	0.8618	0.7890	-0.0985	0.068*
C3	0.9602 (3)	0.8420 (2)	-0.19012 (16)	0.0593 (7)
H3A	0.8811	0.8228	-0.2326	$0.0/1^{*}$
C4	1.0842 (3)	0.8888 (3)	-0.20805 (16)	0.0618(/)
H4A	1.0918	0.9019	-0.2632	0.0/4*
C5	1.1969 (3)	0.9168 (3)	-0.14/6 (2)	0.0681 (8)
H5A	1.2834	0.9494	-0.1606	0.082*
C6	1.1873 (3)	0.8983 (3)	-0.06724 (17)	0.0610 (7)
H6A	1.2671	0.9183	-0.0252	0.073*
C7	1.0563 (3)	0.8383 (3)	0.04239 (17)	0.0665 (7)
H7A	1.1471	0.8740	0.0781	0.080*
H7B	0.9896	0.8912	0.0645	0.080*
08	1.0169 (2)	0.70361 (19)	0.04364 (12)	0.0808 (6)
C9	0.9942 (3)	0.6682 (3)	0.11879 (15)	0.0539 (6)
C10	1.0227 (2)	0.7547 (2)	0.19627 (16)	0.0537 (6)
H10A	1.0600	0.8475	0.2014	0.064*
C11	0.9958 (2)	0.7036 (2)	0.26760 (14)	0.0468 (5)
H11A	1.0156	0.7627	0.3212	0.056*
C12	0.94126 (19)	0.5692 (2)	0.26109 (12)	0.0374 (4)
C13	0.9127 (3)	0.4867 (2)	0.18170 (14)	0.0516 (6)
H13A	0.8740	0.3940	0.1757	0.062*
C14	0.9387 (3)	0.5350 (3)	0.11136 (16)	0.0634 (7)
H14A	0.9182	0.4760	0.0578	0.076*
C15	0.91479 (19)	0.5109 (2)	0.33682 (13)	0.0399 (5)
H15A	0.9742	0.5691	0.3876	0.048*
H15B	0.9404	0.4202	0.3304	0.048*
C16	0.76568 (18)	0.49849 (19)	0.34982 (11)	0.0323 (4)
H16A	0.7423	0.5899	0.3622	0.039*
H16B	0.7049	0.4472	0.2974	0.039*
C17	0.74155 (16)	0.42761 (18)	0.42112 (11)	0.0285 (4)
C18	0.74898 (16)	0.49903 (17)	0.50373 (11)	0.0270 (4)
C19	0.73258 (17)	0.42965 (18)	0.56915 (11)	0.0287 (4)
C20	0.70909 (18)	0.28851 (19)	0.55089 (12)	0.0337 (4)
H20A	0.6985	0.2405	0.5948	0.040*
C21	0.70094 (19)	0.21757 (19)	0.46983 (12)	0.0359 (4)
H21A	0.6846	0.1215	0.4583	0.043*
C22	0.71646 (18)	0.28627 (19)	0.40563 (12)	0.0335 (4)
H22A	0.7100	0.2368	0.3500	0.040*
C23	0.77486 (18)	0.65079 (17)	0.52238 (10)	0.0286 (4)
C24	0.90739 (19)	0.72428 (19)	0.53862 (12)	0.0355 (4)
H24A	0.9825	0.6779	0.5369	0.043*
C25	0.9312 (2)	0.8645 (2)	0.55727 (13)	0.0440 (5)
H25A	1.0223	0.9135	0.5687	0.053*
C26	0.8231 (2)	0.9328 (2)	0.55932 (13)	0.0481 (5)
H26A	0.8394	1.0289	0.5723	0.058*
C27	0.6912 (2)	0.8613 (2)	0.54248 (13)	0.0449 (5)
H27A	0.6166	0.9084	0.5435	0.054*
C28	0.6665 (2)	0.7211 (2)	0.52408 (12)	0.0368 (4)
	× /	× /	· · /	- ()

H28A	0.5751	0.6728	0.5126	0.044*
C29	0.73770 (18)	0.50279 (19)	0.65846 (11)	0.0323 (4)
H29A	0.7910	0.5953	0.6668	0.039*
H29B	0.7857	0.4549	0.6977	0.039*
C30	0.5957 (2)	0.5116 (2)	0.67939 (12)	0.0417 (5)
H30A	0.5488	0.5614	0.6409	0.050*
H30B	0.5418	0.4190	0.6694	0.050*
C31	0.59842 (19)	0.5813 (2)	0.76926 (12)	0.0386 (4)
C32	0.5546 (2)	0.7035 (2)	0.78777 (13)	0.0449 (5)
H32A	0.5268	0.7472	0.7433	0.054*
C33	0.5504 (2)	0.7636 (2)	0.86958 (13)	0.0477 (5)
H33A	0.5187	0.8470	0.8807	0.057*
C34	0.5919 (2)	0.7027 (2)	0.93522 (13)	0.0423 (5)
C35	0.6418 (2)	0.5836 (2)	0.91888 (14)	0.0489 (5)
H35A	0.6744	0.5428	0.9637	0.059*
C36	0.6437 (2)	0.5239 (2)	0.83581 (14)	0.0461 (5)
H36A	0.6770	0.4414	0.8247	0.055*
O37	0.57941 (18)	0.76905 (16)	1.01376 (9)	0.0546 (4)
C38	0.6185 (2)	0.7105 (2)	1.08315 (13)	0.0486 (5)
H38A	0.7189	0.7159	1.0935	0.058*
H38B	0.5746	0.6140	1.0714	0.058*
C39	0.5748 (2)	0.7855 (2)	1.15913 (13)	0.0405 (5)
C40	0.4617 (3)	0.8461 (3)	1.15324 (16)	0.0568 (6)
H40A	0.4097	0.8432	1.0996	0.068*
C41	0.4231 (3)	0.9115 (3)	1.22520 (19)	0.0696 (8)
H41A	0.3447	0.9534	1.2210	0.084*
C42	0.4987 (3)	0.9157 (3)	1.30297 (18)	0.0741 (8)
H42A	0.4726	0.9604	1.3525	0.089*
C43	0.6112 (3)	0.8553 (3)	1.30865 (16)	0.0708 (8)
H43A	0.6635	0.8583	1.3622	0.085*
C44	0.6488 (3)	0.7907 (2)	1.23758 (14)	0.0535 (6)
H44A	0.7271	0.7488	1.2423	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0693 (15)	0.0448 (12)	0.0490 (13)	0.0197 (11)	0.0214 (11)	0.0242 (10)
C2	0.0458 (13)	0.0459 (13)	0.0817 (18)	0.0012 (10)	0.0177 (12)	0.0235 (12)
C3	0.0687 (16)	0.0458 (13)	0.0548 (15)	0.0080 (12)	-0.0095 (12)	0.0059 (11)
C4	0.092 (2)	0.0542 (15)	0.0516 (14)	0.0225 (14)	0.0245 (14)	0.0269 (12)
C5	0.0565 (15)	0.0621 (16)	0.098 (2)	0.0035 (12)	0.0314 (15)	0.0411 (15)
C6	0.0521 (14)	0.0575 (15)	0.0701 (17)	0.0041 (11)	-0.0069 (12)	0.0234 (13)
C7	0.0829 (19)	0.0562 (15)	0.0645 (16)	0.0079 (14)	0.0212 (14)	0.0207 (13)
08	0.1388 (19)	0.0630 (12)	0.0708 (12)	0.0393 (12)	0.0610 (13)	0.0414 (10)
C9	0.0708 (16)	0.0608 (15)	0.0518 (14)	0.0327 (12)	0.0333 (12)	0.0330 (12)
C10	0.0473 (13)	0.0518 (13)	0.0716 (16)	0.0091 (10)	0.0173 (11)	0.0322 (12)
C11	0.0405 (11)	0.0545 (13)	0.0476 (12)	0.0068 (10)	0.0092 (9)	0.0163 (10)
C12	0.0322 (10)	0.0480 (11)	0.0418 (11)	0.0169 (8)	0.0138 (8)	0.0213 (9)

C13	0.0767 (16)	0.0423 (12)	0.0493 (13)	0.0229 (11)	0.0294 (12)	0.0198 (10)
C14	0.110 (2)	0.0508 (14)	0.0480 (13)	0.0344 (14)	0.0382 (14)	0.0226 (11)
C15	0.0328 (10)	0.0563 (13)	0.0385 (11)	0.0140 (9)	0.0107 (8)	0.0224 (9)
C16	0.0294 (9)	0.0399 (10)	0.0297 (9)	0.0095 (8)	0.0054 (7)	0.0098 (8)
C17	0.0217 (8)	0.0338 (9)	0.0318 (9)	0.0079 (7)	0.0051 (7)	0.0088 (7)
C18	0.0208 (8)	0.0294 (9)	0.0317 (9)	0.0052 (7)	0.0044 (7)	0.0084 (7)
C19	0.0220 (8)	0.0338 (9)	0.0317 (9)	0.0055 (7)	0.0049 (7)	0.0097 (7)
C20	0.0313 (9)	0.0340 (10)	0.0387 (10)	0.0050 (8)	0.0075 (8)	0.0147 (8)
C21	0.0345 (10)	0.0277 (9)	0.0451 (11)	0.0053 (8)	0.0042 (8)	0.0083 (8)
C22	0.0313 (9)	0.0349 (10)	0.0329 (9)	0.0074 (8)	0.0048 (7)	0.0024 (8)
C23	0.0316 (9)	0.0305 (9)	0.0249 (8)	0.0062 (7)	0.0046 (7)	0.0082 (7)
C24	0.0336 (10)	0.0355 (10)	0.0386 (10)	0.0047 (8)	0.0044 (8)	0.0138 (8)
C25	0.0468 (12)	0.0362 (11)	0.0445 (12)	-0.0030 (9)	-0.0012 (9)	0.0128 (9)
C26	0.0694 (15)	0.0280 (10)	0.0433 (12)	0.0065 (10)	0.0016 (11)	0.0066 (9)
C27	0.0549 (13)	0.0388 (11)	0.0450 (12)	0.0197 (10)	0.0102 (10)	0.0086 (9)
C28	0.0352 (10)	0.0382 (11)	0.0394 (10)	0.0111 (8)	0.0088 (8)	0.0085 (8)
C29	0.0296 (9)	0.0377 (10)	0.0304 (9)	0.0041 (8)	0.0055 (7)	0.0105 (8)
C30	0.0323 (10)	0.0532 (13)	0.0378 (11)	0.0060 (9)	0.0075 (8)	0.0044 (9)
C31	0.0298 (10)	0.0466 (11)	0.0383 (11)	0.0021 (8)	0.0090 (8)	0.0074 (9)
C32	0.0419 (11)	0.0568 (13)	0.0374 (11)	0.0141 (10)	0.0052 (9)	0.0100 (10)
C33	0.0524 (13)	0.0510(13)	0.0414 (12)	0.0172 (10)	0.0088 (10)	0.0064 (10)
C34	0.0450 (12)	0.0455 (12)	0.0365 (11)	0.0059 (9)	0.0148 (9)	0.0040 (9)
C35	0.0620 (14)	0.0513 (13)	0.0409 (12)	0.0156 (11)	0.0190 (10)	0.0167 (10)
C36	0.0543 (13)	0.0420 (12)	0.0476 (12)	0.0129 (10)	0.0211 (10)	0.0108 (10)
O37	0.0773 (11)	0.0561 (10)	0.0343 (8)	0.0223 (8)	0.0144 (7)	0.0073 (7)
C38	0.0509 (13)	0.0589 (14)	0.0421 (12)	0.0187 (11)	0.0142 (10)	0.0139 (10)
C39	0.0440 (11)	0.0396 (11)	0.0388 (11)	0.0039 (9)	0.0134 (9)	0.0088 (9)
C40	0.0518 (14)	0.0674 (16)	0.0504 (14)	0.0153 (12)	0.0079 (11)	0.0069 (12)
C41	0.0597 (16)	0.0670 (17)	0.084 (2)	0.0177 (13)	0.0278 (15)	0.0017 (15)
C42	0.095 (2)	0.0669 (18)	0.0559 (16)	0.0004 (16)	0.0405 (16)	-0.0080 (13)
C43	0.097 (2)	0.0713 (18)	0.0383 (13)	0.0064 (16)	0.0100 (14)	0.0059 (12)
C44	0.0592 (14)	0.0558 (14)	0.0474 (13)	0.0101 (11)	0.0089 (11)	0.0163 (11)

Geometric parameters (Å, °)

1.377 (3)	C23—C24	1.390 (3)
1.382 (3)	C23—C28	1.392 (2)
1.514 (3)	C24—C25	1.387 (3)
1.375 (4)	C24—H24A	0.9500
0.9500	C25—C26	1.378 (3)
1.357 (4)	C25—H25A	0.9500
0.9500	C26—C27	1.377 (3)
1.352 (4)	C26—H26A	0.9500
0.9500	C27—C28	1.386 (3)
1.380 (4)	С27—Н27А	0.9500
0.9500	C28—H28A	0.9500
0.9500	C29—C30	1.525 (3)
1.378 (3)	С29—Н29А	0.9900
0.9900	С29—Н29В	0.9900
	1.377 (3) 1.382 (3) 1.514 (3) 1.375 (4) 0.9500 1.357 (4) 0.9500 1.352 (4) 0.9500 1.380 (4) 0.9500 0.9500 1.378 (3) 0.9900	1.377(3) $C23-C24$ $1.382(3)$ $C23-C28$ $1.514(3)$ $C24-C25$ $1.375(4)$ $C24-H24A$ 0.9500 $C25-C26$ $1.357(4)$ $C25-H25A$ 0.9500 $C26-C27$ $1.352(4)$ $C26-H26A$ 0.9500 $C27-C28$ $1.380(4)$ $C27-H27A$ 0.9500 $C28-H28A$ 0.9500 $C29-C30$ $1.378(3)$ $C29-H29A$ 0.9900 $C29-H29B$

С7—Н7В	0.9900	C30—C31	1.515 (3)
O8—C9	1.385 (3)	C30—H30A	0.9900
C9—C14	1.368 (4)	С30—Н30В	0.9900
C9—C10	1.379 (3)	C31—C36	1.382 (3)
C10—C11	1.407 (3)	C31—C32	1.384 (3)
C10—H10A	0.9500	C32—C33	1.383 (3)
C11—C12	1.379 (3)	C32—H32A	0.9500
C11—H11A	0.9500	C33—C34	1.381 (3)
C12—C13	1.386 (3)	С33—Н33А	0.9500
C12—C15	1.510 (3)	C34—O37	1.378 (2)
C13—C14	1.376 (3)	C34—C35	1.381 (3)
C13—H13A	0.9500	C35—C36	1.396 (3)
C14—H14A	0.9500	С35—Н35А	0.9500
C15—C16	1.532 (3)	С36—Н36А	0.9500
C15—H15A	0.9900	O37—C38	1.412 (3)
C15—H15B	0.9900	C38—C39	1.501 (3)
C16—C17	1.510 (2)	C38—H38A	0.9900
C16—H16A	0.9900	C38—H38B	0.9900
C16—H16B	0.9900	C39—C40	1.373 (3)
C17—C22	1.398 (2)	C39—C44	1.380 (3)
C17—C18	1.407 (2)	C40—C41	1.386 (4)
C18—C19	1.403 (2)	C40—H40A	0.9500
C18—C23	1.501 (2)	C41—C42	1.379 (4)
C19—C20	1.396 (2)	C41—H41A	0.9500
C19—C29	1.513 (2)	C42—C43	1.366 (4)
C20—C21	1.382 (3)	C42—H42A	0.9500
C20—H20A	0.9500	C43—C44	1.367 (4)
C21—C22	1.380 (3)	C43—H43A	0.9500
C21—H21A	0.9500	C44—H44A	0.9500
C22—H22A	0.9500		
C6—C1—C2	118.1 (2)	C24—C23—C28	118.52 (17)
C6—C1—C7	118.3 (2)	C24—C23—C18	120.83 (16)
C2—C1—C7	123.6 (2)	C28—C23—C18	120.64 (16)
C3—C2—C1	120.8 (2)	C25—C24—C23	120.76 (18)
C3—C2—H2A	119.6	C25—C24—H24A	119.6
C1—C2—H2A	119.6	C23—C24—H24A	119.6
C4—C3—C2	120.1 (2)	C26—C25—C24	120.11 (19)
С4—С3—Н3А	120.0	С26—С25—Н25А	119.9
С2—С3—НЗА	120.0	С24—С25—Н25А	119.9
C5—C4—C3	120.1 (2)	C27—C26—C25	119.73 (19)
С5—С4—Н4А	119.9	C27—C26—H26A	120.1
C3—C4—H4A	119.9	С25—С26—Н26А	120.1
C4—C5—C6	120.5 (2)	C26—C27—C28	120.54 (19)
С4—С5—Н5А	119.7	С26—С27—Н27А	119.7
С6—С5—Н5А	119.7	C28—C27—H27A	119.7
C1—C6—C5	120.3 (2)	C27—C28—C23	120.33 (19)
С1—С6—Н6А	119.8	C27—C28—H28A	119.8
С5—С6—Н6А	119.8	C23—C28—H28A	119.8
O8—C7—C1	108.3 (2)	C19—C29—C30	112.53 (15)

O8—C7—H7A	110.0	С19—С29—Н29А	109.1
С1—С7—Н7А	110.0	С30—С29—Н29А	109.1
O8—C7—H7B	110.0	С19—С29—Н29В	109.1
С1—С7—Н7В	110.0	C30—C29—H29B	109.1
Н7А—С7—Н7В	108.4	H29A—C29—H29B	107.8
C7—O8—C9	118.7 (2)	C31—C30—C29	113.37 (16)
C14—C9—C10	120.3 (2)	C31—C30—H30A	108.9
C14—C9—O8	114.2 (2)	C29—C30—H30A	108.9
C10-C9-O8	125.5 (2)	C31—C30—H30B	108.9
C9—C10—C11	119.1 (2)	C29—C30—H30B	108.9
C9—C10—H10A	120.4	H30A—C30—H30B	107.7
C11—C10—H10A	120.4	$C_{36} - C_{31} - C_{32}$	117 61 (19)
C12—C11—C10	121.1 (2)	C36—C31—C30	120.93 (19)
C12—C11—H11A	119.4	C_{32} C_{31} C_{30}	121 46 (19)
C10-C11-H11A	119.4	$C_{33} - C_{32} - C_{31}$	121.4(2)
C11-C12-C13	117 58 (19)	C33—C32—H32A	1193
$C_{11} - C_{12} - C_{15}$	122 25 (19)	$C_{31} - C_{32} - H_{32A}$	119.3
C_{13} C_{12} C_{15} C_{13} C_{12} C_{15}	120.16(19)	C_{34} C_{33} C_{32}	120.2(2)
$C_{14} - C_{13} - C_{12}$	120.10(1)	C34—C33—H33A	119.9
C14-C13-H13A	119.0	C32—C33—H33A	119.9
C12-C13-H13A	119.0	037 - C34 - C35	125.08 (19)
C9-C14-C13	119.8 (2)	037 - 034 - 033	115 36 (19)
C9-C14-H144	120.1	C_{35} C_{34} C_{33}	119.56 (19)
C13 - C14 - H14A	120.1	C_{34} C_{35} C_{36} C_{36}	119.30(17)
C12-C15-C16	113 56 (15)	C34—C35—H35A	120.4
$C_{12} = C_{15} = C_{10}$	108.9	C36-C35-H35A	120.4
C16-C15-H15A	108.9	$C_{31} - C_{36} - C_{35}$	120.1 121.8(2)
C12_C15_H15B	108.9	C31_C36_H36A	121.8 (2)
C16-C15-H15B	108.9	C35-C36-H36A	119.1
H15A_C15_H15B	107.7	$C_{34} = 0.037 = C_{38}$	117.91 (17)
C_{17} C_{16} C_{15}	111 51 (14)	037 - 038 - 039	108.87(17)
C17 - C16 - H16A	100.3	037 - 038 - 038	108.87 (17)
C15-C16-H16A	109.3	C39-C38-H38A	109.9
C17 C16 H16R	109.3	037 C38 H38R	109.9
C15 C16 H16B	109.3	C30 C38 H38B	109.9
	109.5		109.9
110A - 10 - 110B	100.0	$C_{40} = C_{30} = C_{44}$	108.3
$C_{22} = C_{17} = C_{18}$	110.16 (16)	C40 - C39 - C44	119.0(2)
$C_{22} - C_{17} - C_{10}$	119.10(10) 122.20(16)	C40 - C39 - C38	122.1(2)
$C_{18} - C_{17} - C_{18}$	122.20(10) 120.50(16)	$C_{44} = C_{59} = C_{58}$	118.9(2)
$C_{19} = C_{18} = C_{17}$	120.39(10)	$C_{39} = C_{40} = C_{41}$	120.2 (2)
C19 - C18 - C23	119.48 (13)	C_{39} C_{40} H_{40A}	119.9
C1/-C18-C23	119.92 (13)	C41 - C40 - H40A	119.9
$C_{20} = C_{19} = C_{18}$	110.04 (16)	C42 - C41 - C40	119.8 (5)
$C_{20} - C_{19} - C_{29}$	119.04 (10)	C42 - C41 - H41A	120.1
$C_{10} - C_{19} - C_{29}$	122.13(10) 120.05(17)	C_{40} C_{41} C_{41} C_{41} C_{42} C_{42} C_{41}	120.1
$C_{21} = C_{20} = C_{19}$	120.95 (17)	$C_{43} - C_{42} - C_{41}$	119.8 (2) 120.1
C10 C20 H20A	119.5	C_{43} — C_{42} — Π_{42A}	120.1
$C_{19} - C_{20} - H_{20A}$	119.5	C41 - C42 - C42	120.1
$C_{22} - C_{21} - C_{20}$	120.01 (17)	U42 - U43 - U44	120.2 (3)

C22—C21—H21A	120.0	C42—C43—H43A	119.9
C20—C21—H21A	120.0	C44—C43—H43A	119.9
C21—C22—C17	121.04 (17)	C43—C44—C39	120.9 (2)
C21—C22—H22A	119.5	C43—C44—H44A	119.5
C17—C22—H22A	119.5	C39—C44—H44A	119.5
C6—C1—C2—C3	-0.4 (4)	C16—C17—C22—C21	176.61 (16)
C7—C1—C2—C3	176.8 (2)	C19-C18-C23-C24	94.7 (2)
C1—C2—C3—C4	0.5 (4)	C17—C18—C23—C24	-85.2 (2)
C2—C3—C4—C5	-0.2 (4)	C19-C18-C23-C28	-85.1 (2)
C3—C4—C5—C6	0.0 (4)	C17—C18—C23—C28	95.0 (2)
C2—C1—C6—C5	0.2 (4)	C28—C23—C24—C25	0.9 (3)
C7—C1—C6—C5	-177.2 (2)	C18—C23—C24—C25	-178.87 (17)
C4—C5—C6—C1	0.1 (4)	C23—C24—C25—C26	-0.5 (3)
C6—C1—C7—O8	-116.2 (3)	C24—C25—C26—C27	-0.2 (3)
C2—C1—C7—O8	66.5 (3)	C25—C26—C27—C28	0.5 (3)
C1—C7—O8—C9	-175.3 (2)	C26—C27—C28—C23	0.0 (3)
C7—O8—C9—C14	171.9 (2)	C24—C23—C28—C27	-0.7(3)
C7—O8—C9—C10	-8.0(4)	C18—C23—C28—C27	179.12 (17)
C14-C9-C10-C11	10(4)	C_{20} C_{19} C_{29} C_{30}	-82.1(2)
08-09-010-011	-1791(2)	C18 - C19 - C29 - C30	97 1 (2)
C9-C10-C11-C12	-0.3(3)	C19 - C29 - C30 - C31	17850(17)
C_{10} C_{11} C_{12} C_{13}	-0.6(3)	$C_{29} = C_{30} = C_{31} = C_{36}$	-66 3 (3)
C10-C11-C12-C15	178 38 (19)	$C_{29} = C_{30} = C_{31} = C_{32}$	114 4 (2)
C_{11} C_{12} C_{13} C_{14}	0.8(3)	$C_{2}^{36} = C_{31}^{32} = C_{33}^{33}$	-28(3)
C_{15} C_{12} C_{13} C_{14}	-1782(2)	C_{30} C_{31} C_{32} C_{33}	176.6(2)
C10-C9-C14-C13	-0.8(4)	$C_{31} - C_{32} - C_{33} - C_{34}$	170.0(2)
08 - 09 - 014 - 013	1793(2)	$C_{32} = C_{33} = C_{34} = C_{37}^{37}$	-178.05(19)
$C_{12} - C_{13} - C_{14} - C_{9}$	-0.1(4)	$C_{32} = C_{33} = C_{34} = C_{35}$	20(3)
$C_{12} - C_{13} - C_{14} - C_{3}$	0.1(4)	$C_{32} = C_{33} = C_{34} = C_{35}$	2.0(3)
$C_{11} = C_{12} = C_{13} = C_{16}$	-82.4(2)	$C_{33}^{32} = C_{34}^{32} = C_{35}^{32} = C_{36}^{36}$	-27(2)
C13 - C12 - C13 - C10	-82.4(2)	$C_{33} = C_{34} = C_{35} = C_{36}$	-2.7(3)
C12 - C13 - C10 - C17	1/4.30 (1/)	$C_{32} = C_{31} = C_{30} = C_{35}$	2.0(3)
C15 - C10 - C17 - C22	-83.3(2)	$C_{30} = C_{31} = C_{30} = C_{33}$	-1/7.3(2)
	94.1 (2)	$C_{34} = C_{35} = C_{36} = C_{31}$	0.7(3)
C_{22} C_{17} C_{18} C_{19}	0.5 (2)	$C_{35} = C_{34} = C_{37} = C_{38}$	-0.9(3)
C16-C17-C18-C19	-1/6.86 (15)	$C_{33} - C_{34} - C_{37} - C_{38}$	1/9.1 (2)
C_{22} C_{17} C_{18} C_{23}	-179.60 (15)	$C_{34} = O_{37} = C_{38} = C_{39}$	-170.58 (18)
C16—C17—C18—C23	3.1 (2)	037-C38-C39-C40	30.2 (3)
C17—C18—C19—C20	0.2 (2)	037-C38-C39-C44	-151.5 (2)
C23—C18—C19—C20	-179.76 (15)	C44—C39—C40—C41	0.1 (4)
C17—C18—C19—C29	-179.03 (15)	C38—C39—C40—C41	178.4 (2)
C23—C18—C19—C29	1.1 (2)	C39—C40—C41—C42	0.0 (4)
C18—C19—C20—C21	-0.5 (3)	C40—C41—C42—C43	0.0 (4)
C29—C19—C20—C21	178.72 (16)	C41—C42—C43—C44	-0.1 (4)
C19—C20—C21—C22	0.2 (3)	C42—C43—C44—C39	0.2 (4)
C20—C21—C22—C17	0.5 (3)	C40—C39—C44—C43	-0.2 (4)
C18—C17—C22—C21	-0.8 (3)	C38—C39—C44—C43	-178.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C14—H14A…O8 ⁱ	0.95	2.48	3.326 (4)	149
C2—H2A···Cg5 ⁱⁱ	0.95	2.78	3.644 (2)	152
C7—H7B…Cg1 ⁱⁱⁱ	0.99	2.68	3.575 (3)	150
C13—H13A…Cg1 ^{iv}	0.95	2.82	3.620 (2)	143
C28—H28A····Cg3 ^v	0.95	2.98	3.865 (2)	155

Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y, z+1; (iii) -x, -y, -z+2; (iv) -x, -y+1, -z+2; (v) -x+1, -y+1, -z+1.

Fig. 1

Fig. 2

